

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Review / Exam Lecture Notes

 Introduction section: Needs to be learned very well

 Programming with MPI section: Needs to be understood decently

 Question 1 will contain a question on either Amdahl's law, or Gustafson's law

 MUST know consequences of laws; i.e: results of more serial parts/more processors

added

 Question 2 will be on MPI Methods

 Question 3 will be on Sorting Algorithms.

 MUST know Core MPI functions: send, recv, scatter, gather, bcast etc. Need to

memorise methods with appropriate arguments.

 Will need to write an MPI function with the methods studied

 MUST be able to solve simple routines as done in the labs

 MUST know Compare/Exchange.

 Hinted that Odd/Even sort will be on the exam

 Need to understand/be able to write MPI methods for max, min, product,

comp/exch etc.

 Will be a question on examining the complexity of a sorting method (number of

operations, evaluated into an expression)

 Possible sorting methods: simplistic, linear, bucket, ranking, odd/even, shell.

 Questions that will NOT appear:

- Merge sort w/ Divide & Conquer

- Canon/Matrix Multiplication

- Fractals

- Virtual Topologies

- Bitonic sorting

- Cloud Computing

 On answering questions:

- "Briefly describe": Sabin wants 2 sentences, max.

- "Describe": Sabin wants 4 sentences, max.

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

2014 Exam with answers

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Terms & Definitions

SISD

Short for single instruction, single data. A type of parallel computing

architecture that is classified under Flynn's taxonomy. A single processor

executes a single instruction stream, to operate on data stored in a single

memory. There is often a central controller that broadcasts the instruction

stream to all the processing elements.

MISD Short for multiple instruction, single data. A type of parallel computing

architecture that is classified under Flynn's taxonomy. Each processor owns its

control unit and its local memory, making them more powerful than those used

in SIMD computers. Each processor operates under the control of an

instruction stream issued by its control unit: therefore the processors are

potentially all executing different programs on different data while solving

different sub-problems of a single problem. This means that the processors

usually operate asynchronously.

SIMD Short for single instruction, multiple data. A type of parallel computing

architecture that is classified under Flynn's taxonomy. A single computer

instruction perform the same identical action (retrieve, calculate, or store)

simultaneously on two or more pieces of data.

* Typically this consists of many simple processors, each with a local memory in

which it keeps the data which it will work on. Each processor simultaneously

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

performs the same instruction on its local data progressing through the

instructions in lock-step, with the instructions issued by the controller

processor. The processors can communicate with each other in order to

perform shifts and other array operations.

MIMD Short for multiple instruction, multiple data. A type of parallel computing

architecture that is classified under Flynn's taxonomy. Multiple computer

instructions, which may or may not be the same, and which may or may not be

synchronized with each other, perform actions simultaneously on two or more

pieces of data. The class of distributed memory MIMD machines is the fastest

growing segment of the family of high-performance computers

MPI M P I = Message Passing Interface

An Interface Specification: MPI is a specification for the developers and users of

message passing libraries. By itself, it is NOT a library - but rather the

specification of what such a library should be.

Simply stated, the goal of the Message Passing Interface is to provide a widely

used standard for writing message passing programs.

The interface attempts to be: practical, portable, efficient, flexible.

Interface specifications have been defined for Fortran, C/C++ and Java

programs.

SPMD In computing, SPMD (single program, multiple data) is a technique employed to

achieve parallelism; it is a subcategory of MIMD. Tasks are split up and run

simultaneously on multiple processors with different input in order to obtain

results faster. SPMD is the most common style of parallel programming.

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Shared

Memory

Multiprocessor

System

Message-

Passing

Multicomputer

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Distributed

Shared

Memory

Multiple

Program

Multiple Data

(MPMD)

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Single Program

Multiple Data

(SPMD)

Laws

Flynn’s Taxonomy

First proposed by Michael J. Flynn in 1966, Flynn's taxonomy is a specific classification of parallel

computer architectures that are based on the number of concurrent instruction (single or

multiple) and data streams (single or multiple) available in the architecture. The four categories in

Flynn's taxonomy are the following:

 (SISD) single instruction, single data

 (MISD) multiple instruction, single data

 (SIMD) single instruction, multiple data

 (MIMD) multiple instruction, multiple data

Gustafson’s Law

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Amdahl’s Law

Amdahl's Law states that for a problem of a fixed size(in terms of data), the speed up of a program
 executed on multiple processors is limited by the serial parts of the program. It is often used to
predict the theoretical maximum speedup using multiple processors. (f is the serial part)

For example, Assume that a task has two independent parts, A and B. A takes 75% of the time of t
he whole computation and B takes 25%, where A is parallelizable and B is serial.

If part A is made to run twice as fast;

 n = 2

 timeA = 75

 timeB = 25

 f = timeB / (timeA + timeB) = 0.25

As can be seen from above equation, no matter how many processors you may add to complete t
he computation, the maximum speedup achieved will always be limited by the serial part.

f=0 when no serial part → S(n)=n perfect speedup. f=1 when everything is serial → S(n)=1 no par
allel code.

S(n) is increasing when n is increasing

S(n) is decreasing when f is increasing.

We get perfect speedup S(n) = n when f = 0. There is no serial part of the program so all of the wor
k can be done in parallel. Conversely there is no speedup S(n) = 1 when f = 1.

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

The speedup has an upper bound of 1 / f

From the above we can see that no matter how many processors are being used, the speedup
cannot increase above 1 / f. (the speedup has an upper bound of 1 / f)

This means the gain in speed achieved by adding another processor decreases as n becomes large.

Computational workload W is fixed while the number of

processors that can work on W can be increased.

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

Code

Odd-Even

This a variation of Bubble Sort and operates in two alternating phases, an even phase and an off

phase.

Even – Even-numbered processes exchange numbers with their right neighbour.

Odd - Odd-numbered processes exchange numbers with their right neighbour.

int MPI_OddEven_Sort(int n, double *a, int root, MPI_Comm comm) {

 int rank, size, i, sorted_result;
 double *local_a;

 // get rank and size of comm
 MPI_Comm_rank(comm, &rank); //&rank = address of rank
 MPI_Comm_size(comm, &size);

 local_a = (double *) calloc(n/size, sizeof(double));

 // scatter the array a to local_a
 MPI_Scatter(a, n/size, MPI_DOUBLE, local_a, n/size, MPI_DOUBLE, root, comm);

 // sort local_a
 merge_sort(n/size, local_a);

 // do the odd-even stages (as in the slide - get the same code, it will help a lot)
 for(i = 0; i < size; i++) {

 if((i + rank) % 2 == 0) { // means i and rank have same nature

 if(rank < size-1) {
 MPI_Compare(n/size, local_a, rank, rank+1, comm);
 }
 }
 else if(rank > 0) {
 MPI_Compare(n/size, local_a, rank-1, rank, comm);
 }

 MPI_Barrier(comm);

 // test if array is sorted
 MPI_Is_Sorted(n/size, local_a, root, comm, &sorted_result);

 // is sorted gives integer 0 or 1, if 0 => array is sorted
 if(sorted_result == 0) { break; } // check for iterations

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

 }

 // gather local_a to a
 MPI_Gather(local_a, n/size, MPI_DOUBLE, a, n/size, MPI_DOUBLE, root, comm);

 return MPI_SUCCESS;
}

Compare

Take place between processors rank1, rank2. Each processor keeps the array a=(a[i],i=0,1,…,n).

Step 1. The array is scattered onto p smaller arrays.
Step 2. Processor rank sorts its local array.
Step 3. While is not sorted / is needed compare and exchange between some processors
Step 4. Gather of arrays to restore the sorted array.

int MPI_Compare(int n, double *a, int rank1, int rank2, MPI_Comm comm) {

 int rank, size, i, tag1 = 0, tag2 = 2;

 MPI_Status status;
 MPI_Comm_rank(comm, &rank);
 MPI_Comm_size(comm, &size);

 double *b = (double *) calloc(n, sizeof(double));
 double *c;

 //do pingpong between rank 1 and rank 2
 if(rank == rank1) {
 MPI_Send(&a[0], n, MPI_DOUBLE, rank2, tag1, comm);

 MPI_Recv(&b[0], n, MPI_DOUBLE, rank2, tag2, comm, &status);

 c = merge_array(n,a,n,b);
 for(i = 0; i < n; i++) {
 a[i] = c[i];
 }
 }
 else if(rank == rank2) {
 MPI_Recv(&b[0], n, MPI_DOUBLE, rank1, tag1, comm, &status);

 MPI_Send(&a[0], n, MPI_DOUBLE, rank1, tag2, comm);

 c = merge_array(n,a,n,b);
 for(i = 0; i < n; i++) {
 a[i] = c[i+n];
 }
 }
 return MPI_SUCCESS;

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

}

Bucket Sort

Suppose that array=(array[i], i=0,…,n-1) has all elements in the interval [0, a]. Use multiple buckets /
collectors to filter the elements in the buckets. Then sort the buckets.

MPI_Bucket_sort(int n, double *a, double m, int root, MPI_Comm comm) {

 int rank, size, *bucketSize, *bucketSizes;
 int n = 100000;
 double m = 1000.0;
 double *a, *bucket;

 MPI_Comm_rank(comm, &rank);
 MPI_Comm_size(comm, &size);

 a = (double *) calloc(n, sizeof(double));
 bucket = (double *) calloc(n, sizeof(double));
 bucketSizes = (int *) calloc(size, sizeof(int));

 // Initialise the array a with random values

 // Braodcast the array to the processor
 MPI_Bcast(&a[0], n, MPI_DOUBLE, root, comm);

 // Collect the elements of bucket rank from array
 bucketSize = 0;
 for (i = 0; i < n; i++) {
 // when a[i] is in the bucket
 if (a[i] >= m*rank/size && a[i] < m*(rank + 1)/size) {
 bucket[bucketSize++] = a[i];
 }
 }

 // Sort the bucket
 merge_sort(bucketSize, bucket);

 // Gather the buckets i.e gather bucketSize to bucketSizes
 MPI_Gather(&bucketSize, 1, MPI_INT, &bucketSizes[0], 1, MPI_INT, root, comm);

 // calculate the displacements
 if(rank==0) {
 for(disp[0]=0; i<size-1; i++) {
 disp[i+1]=disp[i] + bucketSize[i];
 }
 }

 // Gatherv the array
 MPI_Gatherv(&bucket[0], bucketSize, MPI_DOUBLE, &a[0], bucketSizes, disp, 0,
MPI_COMM_WORLD);

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

 return MPI_SUCCESS;
}

Shell Sort

Shell Sort is based on two stages:
Stage 1. Divide the shells
 for l=0,1,2, log(p)
 - Exchange in parallel between extreme processors in each shell.
Stage 2. Odd-Even
 for l=0,1,2, …,p
 - if rank and l are both even then exchange in parallel betw rank and rank+1
 - if rank and l are both odd then exchange in parallel betw rank and rank+1
 - test “array sorted”

Shell Sort Complexity

int MPI_Shell_Sort(int n, double *a, int root, MPI_Comm comm) { // Odd-Even Sort

 int rank, size, i, l, k, pair, sorted_result;
 double *local_a;

 // get rank and size of comm
 MPI_Comm_rank(comm, &rank);

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

 MPI_Comm_size(comm, &size);

 local_a = (double *) calloc(n/size, sizeof(double));

 //Stage 1. Divide the shells
 //for l=0,1,2, log(p)
 // - exchange in parallel betw extreme processors in each shell.
 for(l = 0; l < log(size); l++){
 k = (rank*pow(2, l)) / size;
 pair = (2*k +1)*(size/pow(2, l)) -1 -rank;

 if(rank < pair) {
 MPI_Compare(n/size, local_a, rank, pair, comm);
 }
 if(rank > pair) {
 MPI_Compare(n/size, local_a, pair, rank, comm);
 }
 }

 // scatter the array a to local_a
 MPI_Scatter(a, n/size, MPI_DOUBLE, local_a, n/size, MPI_DOUBLE, root, comm);

 // sort local_a
 merge_sort(n/size, local_a);

 // do the odd-even stages
 for(i = 0; i < size; i++) {

 if((i + rank) % 2 == 0) {

 if(rank < size-1) {
 MPI_Compare(n/size, local_a, rank, rank+1, comm);
 }
 }
 else {
 if(rank > 0) {
 MPI_Compare(n/size, local_a, rank-1, rank, comm);
 }
 }

 MPI_Barrier(comm);

 // test if array is sorted
 MPI_Is_Sorted(n/size, local_a, root, comm, &sorted_result);

 // is sorted gives integer 0 or 1, if 0 => array is sorted
 if(sorted_result == 0) { break; } // check for iterations
 }

 // gather local_a to a
 MPI_Gather(local_a, n/size, MPI_DOUBLE, a, n/size, MPI_DOUBLE, root, comm);

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

 return MPI_SUCCESS;
}

Linear Sort

Suppose that the array a=(a[i], i=0,…,n-1) has only integers in 0,1,…,m-1. In this case we can count how
many times j=0,1,…,m-1 occurs in a. Then this information is reused to generate the array.

Example:
 a=(2,1,3,2,1,3,0,1,1,2,0,3,1)
 count[0]=2, count[1]=5, count[2]=3, count[3]=3
 a is restore with 2 0-s, 5 1-s, 3 2-s and 3 3-s.
 a=(0,0,1,1,1,1,1,2,2,2,3,3,3)

MPI_Linear_sort(int n, int *a, int m, int root, MPI_Comm comm) {

 // The array a is scattered on processors.
 // The count is done on the scattered arrays.
 // The count arrays are all sum-reduced on processors
 // If root then restore the array

 int rank, size, i, sorted_result;
 double *local_a;

 // get rank and size of comm
 MPI_Comm_rank(comm, &rank); //&rank = address of rank
 MPI_Comm_size(comm, &size);

 local_a = (double *) calloc(n/size, sizeof(double));

 // Scatter the array a to local_a
 MPI_Scatter(a, n/size, MPI_DOUBLE, local_a, n/size, MPI_DOUBLE, root, comm);

 // The count is done on the scattered arrays.
 //for(i = 0; i < n/size; i++) { local_sum += local_a[i] }

 // reset the counters
 for(j=0;j<m;j++) count[j] = 0;
 // generate the counters
 for(i=0;i<n;i++) count[a[i]] ++;
 // restore the array order based on counters
 for(j=0;j<m;j++)
 for(k=0;k<count[j];k++)
 a[i++] = j;

 // Reduce local_sum into sum
 MPI_Reduce (&local_sum, &sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

 // If root then restore the array
 if(rank == 0) {
 for(i=0; i<n; i++) {
 a[i] = sum[i];
 }
 }
}

Rank Sort

The number of numbers that are smaller than each of the selected number counted. This count

provides the position of the selected number in the sorted list, that is, its rank.

MPI_Rank_sort(int n, int * a, int * b, int root, MPI_Comm comm)

{

 int rank, size, * ranking, *overallRanking;

 MPI_Comm_size(comm, &size); MPI_Comm_rank(comm, &rank);

 ranking = (int *) calloc(n/size, size(int)); overallRanking = (int *) calloc(n, size(int));

 // bcast the array a

 MPI_Bcast(&a[0], n, MPI_INT, root, comm);

 // generate the array ranking

 for(i=0; i<n/size; i++)

 for(ranking[i]=j=0; j<n; j++)

 if(a[j]>a[i+rank*n/size])ranking[i]++;

 // gather ranking

 MPI_Gather(&ranking[0], n/size, MPI_INT, &overallRanking[0], n/size, MPI_INT, root, comm);

 // restore the order

 if(rank==0){

 for(i=0;i<n;i++)b[overallRanking[i]]=a[i];

 }

 return MPI_SUCCESS;

}

Sub-Routines

MPI_Bcast()

Sends a message from the process with the rank ‘root’ to all other processes in the group.

MPI_Bcast(&a[0], n, MPI_DOUBLE, root, comm);

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

MPI_Reduce()

Applies a reduction operation on all tasks in the group and places the result in one task.

MPI_Reduce (&local_sum, &sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Send()

Basic send routine returns only after the application buffer in the sending task is free for reuse.

MPI_Send(&a[0], n, MPI_DOUBLE, rank1, tag1, comm);

MPI_Recv()

Receive a message and block until the requested data is available.

MPI_Recv(&b[0], n, MPI_DOUBLE, rank1, tag1, comm, &status);

MPI_Init()

Initalises the MPI execution environment.

MPI_Init (&argc, &argv)

MPI_Gather()

Gathers direct messages from each task in the group to a single destination task – Opposite of

Scatter.

MPI_Gather(&bucketSize, 1, MPI_INT, &bucketSizes[0], 1, MPI_INT, root, comm);

MPI_Is_Sorted()

Test if the array is sorted. Is sorted gives integer 0 or 1. If 0 => array is sorted.

MPI_Is_Sorted(n/size, local_a, root, comm, &sorted_result);

MPI_Compare()

MPI_Compare(n/size, local_a, rank, pair, comm);

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : CS4402

Exam Date: Thursday 11th December 2014 @ 16.30

MPI_Scatter()

Distributes from a single task to each task in the group.

MPI_Scatter(a, n/size, MPI_DOUBLE, local_a, n/size, MPI_DOUBLE, root, comm);

MPI_Max() ???

MPI_Max_array(int *a, int *max, MPI_Comm comm) {

 If (rank == 0) {

 max = mymax;

 for(i=1;i<numprocs;i++) {

 MPI_Recv(&mymax, 1, MPI_INT, MPI_ANY_SOURCE, 1, MPI_COMMM_WORLD,

&status);

 if(max<mymax) max = mymax;

 }

 printf(max);

 }

}

Quick Revision
Odd-Even = so digest S Sort

D Do

I Is Sorted

G Get

E Even

S Scatter

T Test

Bucket Sort = wc bc gigs W When

 C Compare

 B Broadcast

 C Calculate

 G Gather

 I Initialise

 G Gather

 S Sort

