Title : CS4402 Study

'll Ll C C Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

Review / Exam Lecture Notes

Introduction section: Needs to be learned very well
Programming with MPI section: Needs to be understood decently

Question 1 will contain a question on either Amdahl's law, or Gustafson's law

MUST know consequences of laws; i.e: results of more serial parts/more processors
added

Question 2 will be on MPI Methods

Question 3 will be on Sorting Algorithms.

MUST know Core MPI functions: send, recv, scatter, gather, bcast etc. Need to
memorise methods with appropriate arguments.

Will need to write an MPI function with the methods studied

MUST be able to solve simple routines as done in the labs

MUST know Compare/Exchange.

Hinted that Odd/Even sort will be on the exam

Need to understand/be able to write MPI methods for max, min, product,
comp/exch etc.

Will be a question on examining the complexity of a sorting method (number of
operations, evaluated into an expression)

Possible sorting methods: simplistic, linear, bucket, ranking, odd/even, shell.

Questions that will NOT appear:
- Merge sort w/ Divide & Conquer
- Canon/Matrix Multiplication
- Fractals
- Virtual Topologies
- Bitonic sorting
- Cloud Computing

On answering questions:
"Briefly describe": Sabin wants 2 sentences, max.
- "Describe": Sabin wants 4 sentences, max.

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

2014 Exam with answers

Question 1. Parallel Computing Models
(a) Explain briefly the following terms: Shared Memory Machine, Distributed Memory

Machine, SPMD and Load Balancing.

(10 marks)
-
G4
A (‘> L‘;) G e d Meroy fMockine
A Machan in . each ndivcdwal P xess ag
O Common. dDhafed

Memo &7 \’/

> ;%‘\
Tfte Proce sscns antrs s NS boaatse e
Own O~emMmoi T
OD D\Sh“bu\fqa Memo —r N&QC%U\(_
,:;\\ MaCkine N\ CadioniaRanes: TS D e Sual
YrocesScns LA has (= oo Coca l -
Memsi™7 . Catel MUus be Skared ErtDLs A
MesHase Pass N
" / - T
=2 el
l'A\ LWy ord Malline cComMmib(nNe> o b oF (e

MO de S

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

Qlaawy SSPMD, Sinele. Pregram MutrPle Qubw serear?s

6re OF Ele o ClassiFicahon) o~ MIMD

in Whkith . Dwngle progtarn g cts oA

Muttiple date Streams *
AL
=

[Ftliue] ST5O_| PTSO |

@é";ﬁw{ STMD 4‘“:‘ s 1’

SPMD
N -

o —

&’i@w) Load batlancrs o> te ack OF &thermptng

to balance Cle Compubatonal buiTden O

G MultP O €550 S YsSeem evenlyr

ALros5s Tle (ndwvidu L Pro cesser> (n T

St SFe™

Q Q(’W

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

(b) State the Gustafson law and provide a proof for it.
(10 marks)

QA
b GU\’; FaFSon's Law Dtares

S(ﬂ\) = 0. Serat Part & C’] "5o.rlLboar'r5 l[Y,‘\‘"

(¢) Give and explain briefly four consequences of this law.

(10 marks)
&
- 1t Rrovizes No wpPPerooknd, ON Secedu P
(a5 Yoo (nCrense tle NdMber oF Plocesssrs

tle SPeedupr al\so tﬂ(.\‘ec\SES

({;’&{'@ The greater Cle Se,r\q,\i\P rh, tl Smalle|—

Cle DPe fuP

Question 2. MPI Programming and Parallel Algorithms

(a) Explain briefly and give the full prototype for the following MPI functions:

MPI_Bcast(), MP1_Gather(), MPI_Gatherv(), MPI_Comm_size().
(10 marks)

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

—
M‘P_L, %Cm‘?*", %(‘OC&JCO-$ = W
OF o bhufFrer Eo all P(—OCQ%»S/CFB (VIS AT
a. lommantcatom 4r2ap o o
Nk NPI-Q:&SY C Uotd ® buFFQ\'j // burrer Eo Send
In¥ Count, 7V tle Size oF Wwike
tie CyPe oF Cle tfems
MPLOar. tYPC, /' (n fe burmer
int foot, & €l Cunk OF te PoC
Sandiny bwrre™
MPT Comn COMM_qrour # Comm grour OF
o Plocessors Cakus
./J Part (ah Gcasf
(etmns TesPonse Code MPIT - Ductess IF Swessaull
{a5 do all tie Follow ¢ "D MCMS\,-
‘\4'}" -~ = P *’
ol v B ottty ratler o buFFer oF elements

Flom Many Proessors Co Ohne (Pizxessor

nt

MPT _Gatter — voud * wuprer,-. %\ZA‘FGF
Int couwnt, #Seal counk
MPT _Data tyee, [/ ENO oF (herms nbuFRe—
Vo™ vuFFer # (eceiwe buffer
InF court, /A Tecernve counk
MPL_Pare €¥Pe, // tyee ofF recewue tems
b foot, J ook oF froc gatlerim To

NPT —Comm Comm , atouP // Sioue OF Plxessol
tavim pary

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

MPT _Cabkeyy Soakier date. From remare

Vioressors Eo o (oot Lreie Gl Lemiw

OF &ealk SoF oF L // o Process o
L an Send Veities
inkF MPT _Gaterv L Yot ™ warfer, /9 purrer

iTal CGM-I"}'; f." Court- OF %2rl budF

One oF MPI _Doub _
MPTINT erc . MPT. Dabe trPe, ﬂf’:c,s?c OF Snd bury

Vol * parfer, [/ feceive urre

it Count , .f';"(fourt &F retelve ouAy

(nt™= disPis, IK)\'{T’G\-‘T VST RaCHinTy byad

Lo sk, wace e
L= Y I;_,._|,'._--,:__..I,C

MPT _Oolbe. tybe ; f1Evee oF recere iyl
1Nt Do+, ,_/fdc;hmh;ﬂ o ;é}a_ i
MPT _Comm CommGrour [/ comm givud

"?C'F Pm;__b f’:zi"be"p;ﬁlnjp Sa}-i.e_r’

L
‘\..- .

FJIP-_E_{:::JMI"\ - dnze Ger Lw Slze oF
o Bartiewdfaim Camm 'f][u‘r_':-uF"'
\ /
p L'\../ ~
el MPT ~ Carmm — 522 { MPT_Comm m CommM_3roup,

-
* N 9128 . HMtowre size cotl be

~ Placed

. j-l
\oRe

UCC

Gostizta na CHsgall Gorcaigh, Ene

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

(b) Give an explanation of how the parallel bucket sort works and write an MPI

|

function for it. The prototype of this function may be:

int MPI Sort(int n, int *a, int root, MPI_Comm comm)

(20 marks)
c
(2. The @e@ntive aimay ts b sadcast {fo
1) atl Processocs [€ ta Dot ins SlousE
€ocly Prexeasor %ets e (hems el y
Ale1m— Palftic wlarl baclee b & i/

Once s PmcC'Dbo =

RVt Ele 1 bucke +—

(£ - Sects tie leccleet taternelly |

Tle bucketrs are €tlee

Cle o e

Y tered UuP N Ocler

info ool ked (<

Ouearz L
{ [
13 v |2

ll ;;: b | $‘r|r_"—fﬁr_0

I
1%

Eﬂ,z)
Jd

Vac ket
O -2 o R &= % \/
I

ll_/ \k/' \\./
Sort i Sart

N / 7

~‘-\bv\> \["r)r‘«ﬁ. é/’
— Fler
\Ll

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

Asume exists an M Huceh thal
M AS MeX e i sk S

int MPT_ Sory Cmi— n, |nt *6\, (nk Toor,
Mel Comf’\ Cormm :3
<
Ny 9v2e, ranl, l-, CCis: ™
MPT _Comm_sze ((omm, ¥ s1e D)
MPT _ Comen - tank (Comm, § Can%)}
7 Bioad cast enhre i ey Lo e\ Prcessors
fe= MPT _Beastk L&, PL.INT, (pot. Comm))
&' oec \= MPT . Success) 2
MPT _Avort (O, tomm))

, N

tat % bucxer = (ot cattoc (N, $‘2‘2°“'C""ﬂ.}

inr buckerlount = O

ot bucker Range Lengbh = ™M /s12e

for (iz05 i(ﬂ;, L4+) &

IF (6L10 2 fank % \uorer Ranse Lenath B4

al1J < Cank +1) 2 backet Range Lensth) i
bucket CouckerGount ++73 = «a Lidy 3

3

Meme _ Soct (backer, hucker-csank J3
1N+ * overolt Bucker Count % Che =) calloe (5122, szwrc.n;-)J_
ez MPT_ Gattar (buckerCant \Y, MPI_INT, overall Buckes-Count,
1, MPT _Tar, foCot. Comm))
F {rel= MPT Swess) £
MPT _Abort LO, emm?)

&

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11t December 2014 @ 16.30

‘\)\./'

ink % dsels

¥ (fank = foot)% &
dise(s = me *} CaMloe { 3i2e, s.t,«/(mn);
dwsecs Lo = O3 |
GacCiz A5 V& 5% C++) &

disetsCi] = dwps[I =1 + ouerall Budrer Count[i-1];
3
2
rc= MPI _Gatierv {_b/bu(‘,lce,\” bac ket Count, ML IwT,

TR, 0, dises, MPI_INT, (oot, omm))

- =
fetuen 1S4 . , :

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

(¢) Evaluate the speedup of the MPI_Sort function assuming that all buckets are

similarly sized. For simplicity consider that the complexity of the sequential sort is

quadratic and Tyeqpeep =0.
(10 marks)

&~

B ¥
;
A

1T)
SPeadu® = TnD) -

/

T(ﬂ\, = —1{‘9!“”\ (ﬁ\ i ‘rcoMOm\z (ﬂ\}

rd

M

T = 0%

—Y_Corv\f"\ (nd =
Tecomm For Bcastr = N.lcomm

—rComM FOT bBucketlounk Gatler — o &7 2, <R '\.com ~ .
'\-Comm o Jatery = . -‘_Cor’\ M
= TeommnN = Lo t5vze . Tcomm

L combare (0 =
"'_Col"lpul"t Fill Wackers — (a7 Tcome e

\

. !
\compalre Sorh nkpal “Sacketrs = N/ sz gy N/5\2e

FroMm GesumPhion oF StmUart Szel buatker
Forring Leing MOrMmal Mers’ ol

!como..& disPlatement s — Size. [compute

o n_ 0.
=D Teompure (0) = N + 5re aSh, tS12e, lcommnke
. e _
:D ! <n) = 2'0 tSe, TCDMM + 0 *’§~& (‘3” +5i122, 1 com&\,.,k\

& & %
—_D DO du® = e AN e

0N n
L ({f\ 20 45172 Teomm + N Y oo Log;u'f si2e, lcem Puke]

AU

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

(d) Provide and briefly discuss two negative and two positive facts about the MPI_Sort

function.
(10 marks)

i &) -
b Negarive Factrs
1 entwe aritey must e btoadcest o
S a\\ Pretesses ok ng aolr \/< SoTH
= T NC feasesS Comm\ﬁﬁ;C(\‘_(d/\

comMmpPex L2 Substant (a7

2. Eacl: P fotessor Mus - Z(—c,.\'—e

entie Girav Fe Pnd (onternts

[l (rs \suckelr S,

3., N
—

= ViCreases Limeas(y Cotv CecglFn oF

L g

&S A Processar does nNot Khowd thoe
mMans ltemg ale acins te ‘oc TN B Y
backelt s Means [Must o (lecal-@
. -buckel ©OfF Siea 6

) INC reases = Pace Com v (ert >
7 (-’C:ﬁt%
>

+ An uePer and lower s Mus b be
1€ nowoA on Clie- Contents OF [w
Qvimy | LN TS CeSC L™ uas &5SSumgy

- o an o .

S = Nobr all armdS OFe Kood Cenddales
= For butker Serk. Tle {HusE b
evenl 7 st Fiwuyed

es | Q‘OOO‘{I,‘ Looo4 3, 2000 oo/‘ s -y

i mata -r

Title : C54402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

r‘\l‘»
0.

Pooitive Facks
1 Tt Va5 a (ow ComPorabon fomPlxiby
E—

and this Celuces (el A Cte

Se OF [le Solfkis gleul (5 &S

=T = /
i3 18 L k has Minimal Seaential Fo© t—j; Ma ki nsS

I\ o 9 c0d Cand Halrea =0 SPLd P

Terms & Definitions

SISD Short for single instruction, single data. A type of parallel computing
architecture that is classified under Flynn's taxonomy. A single processor
executes a single instruction stream, to operate on data stored in a single
memory. There is often a central controller that broadcasts the instruction
stream to all the processing elements.

MISD Short for multiple instruction, single data. A type of parallel computing
architecture that is classified under Flynn's taxonomy. Each processor owns its
control unit and its local memory, making them more powerful than those used
in SIMD computers. Each processor operates under the control of an
instruction stream issued by its control unit: therefore the processors are
potentially all executing different programs on different data while solving
different sub-problems of a single problem. This means that the processors
usually operate asynchronously.

SIMD Short for single instruction, multiple data. A type of parallel computing
architecture that is classified under Flynn's taxonomy. A single computer
instruction perform the same identical action (retrieve, calculate, or store)
simultaneously on two or more pieces of data.

* Typically this consists of many simple processors, each with a local memory in

which it keeps the data which it will work on. Each processor simultaneously

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

performs the same instruction on its local data progressing through the
instructions in lock-step, with the instructions issued by the controller
processor. The processors can communicate with each other in order to
perform shifts and other array operations.

MIMD

Short for multiple instruction, multiple data. A type of parallel computing
architecture that is classified under Flynn's taxonomy. Multiple computer
instructions, which may or may not be the same, and which may or may not be
synchronized with each other, perform actions simultaneously on two or more
pieces of data. The class of distributed memory MIMD machines is the fastest
growing segment of the family of high-performance computers

MPI

M P | = Message Passing Interface

An Interface Specification: MPl is a specification for the developers and users of
message passing libraries. By itself, it is NOT a library - but rather the
specification of what such a library should be.

Simply stated, the goal of the Message Passing Interface is to provide a widely
used standard for writing message passing programs.

The interface attempts to be: practical, portable, efficient, flexible.

Interface specifications have been defined for Fortran, C/C++ and Java
programs.

SPMD

In computing, SPMD (single program, multiple data) is a technique employed to
achieve parallelism; it is a subcategory of MIMD. Tasks are split up and run
simultaneously on multiple processors with different input in order to obtain
results faster. SPMD is the most common style of parallel programming.

Title : C54402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

Shared Shared Memory Multiprocessor System
Memory
Multiprocessor A natural way to extend the single processor model is to have multiple processors
connected to multiple memory modules, such that each processor can access any
System
memory module in a so-called shared memory configuration:
Memory modules
One
address | f-------------
space
Interconnection
network
Processors
Figure 1.3 Traditional shared memory multiprocessor model.
Message-
Passing Message-Passing Multicomputer
Multicomputer

Complete computers connected through an interconnection network:

Interconnection
network

Messages —____
Processor

N
Local _ | | [~° """ 7777
memory -

Computers

Figure 1.4 Message-passing multiprocessor model (multicomputer).

Title : C54402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

Distributed ot
Distributed Shared Memory
Shared Each processor has access to the whole memory using a single memory address space.
Memory For a processor to access a location not in its local memory, message passing must
occur to pass data from the processor to the location or from the location to the
processor, in some automated way that hides the fact that the memory is distributed.
Interconnection
network
Messages —____
Processor
Shared Y/ 1T TV
memory "
Computers
Figure 1.5 Shared memory multiprocessor implementation.
Multiple
Program Multiple Program Multiple Data (MPMD) Structure
Multiple Data
Within the MIMD classification, which we are concerned with, each processor will
(MPMD) P

have its own program to execute:

@ __________________ @

Instructions Instructions

Processor [-~-"--"--=""--"=-------~- Processor

Data Data

Figure 1.6 MPMD structure.

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

Single Program
Multiple Data
(SPMD)

Single Program Multiple Data (SPMD) Structure

Single source program is written and each processor will execute its personal copy of

this program, although independently and not in synchronism.

The source program can be constructed so that parts of the program are executed by

certain computers and not others depending upon the identity of the computer.

Laws

Flynn’s Taxonomy

First proposed by Michael J. Flynn in 1966, Flynn's taxonomy is a specific classification of parallel

computer architectures that are _(single or
multiple) and data streams (single or multiple) available in the architecture. The four categories in

Flynn's taxonomy are the following:
. (-) single instruction, single data
. (-) multiple instruction, single data
° (-) single instruction, multiple data
° (-) multiple instruction, multiple data

Gustafson’s Law

This law says that merease of problem size for large machines can retain scalability with
respect to the number of processors.

Assume that the workload 13 scaled up on an n-node machine as, s
W'=alW +{1—aniv

Title : C54402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

Speedup for the scaled up workload 1s then,

Single ProcessorExeutionTime

S =
A - N N
) 1 — ProcessorExecutionTime

o (W +(1—a)nli)/1 (3)
n o T _ ﬁ?
¥ N (1-—amn
1 i

&

Simplifying Eq.(3) produces the Gustafson’s law:
S, =a+(l-an (4)

Notice that if the workload 1s scaled up to maintain a fixed execution time as the number
of processors increases, the speedup increases linearly. What Gustafson’s law says 1s that
the true parallel power of a large multiprocessor system 1s only achievable when a large
parallel problem is applied.

Important Consequences:
1) S(n) 1s increasing when n is increasing
2) S(n) 1s decreasing when n 1s increasing

3) There is no upper bound for the speedup.

Title : C54402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

Amdahl’s Law

I I S S S S

_ fﬁ; I
S(n) i+ =tdn - T+m=-1)f

—_——— e ————— =/

Amdahl's Law states that for a problem of a fixed size(in terms of data), the speed up of a program
executed on multiple processors is limited by the serial parts of the program. It is often used to
predict the theoretical maximum speedup using multiple processors. (f is the serial part)

For example, Assume that a task has two independent parts, A and B. A takes 75% of the time of t
he whole computation and B takes 25%, where A is parallelizable and B is serial.

If part A is made to run twice as fast;

[] n= 2
e timeA=75
e timeB=25

e f=timeB/ (timeA +timeB)=0.25

2

maximum speedup < = 1.60

[+025-(2—1)

As can be seen from above equation, no matter how many processors you may add to complete t
he computation, the maximum speedup achieved will always be limited by the serial part.

f=0 when no serial part = S(n)=n perfect speedup. f=1 when everything is serial & S(n)=1 no par
allel code.

S(n) is increasing when n is increasing

S(n) is decreasing when f is increasing.

We get perfect speedup S(n) = n when f = 0. There is no serial part of the program so all of the wor
k can be done in parallel. Conversely there is no speedup S(n) =1 when f = 1.

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

The speedup has an upper bound of 1/ f

H

o 1
= ey ST

From the above we can see that no matter how many processors are being used, the speedup
cannot increase above 1/ f. (the speedup has an upper bound of 1/ f)

This means the gain in speed achieved by adding another processor decreases as n becomes large.

Computational workload - while the number of

[BRGEESSGHS that can work on W ERIBElincreased.

Title : C54402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

In Amdahl’s law, computational workload ¥ 1s fixed while the number of processors that
can work on I can be increased.

Denote the execution rate of i processors as R, | then in a relative comparison they can be
simplified as R =1 and R =n . The workload is also simplified. We assume that the
workload consists of sequential work ofF" and » parallel work (1— o)/ where o 13
between 0 and 1. More specifically, this workload can be written in a vector form as,
W=(a,0, . 0a-1)F o, Wi=aW , W, =(1-c)¥ and W, =0 forall i=1n.

The execution time of the given work by » processors 1s then computed as,
m W
_ 1, n

R R,

R

Speedup of n processor system 1s defined using a ratio of execution time, 1.2,

T

.S__I =

ST

oIves,
Wil "
.S., = - - — [].
@ A=W " 1+(a-Da)
1 1

A
Eq.(1) 15 called the Amdahl’s law. If the number of processors 1s increased infinity, the
speedup becomes,

S =— (2)

Notice that the speedup can NOT be increased to infinity even if the number of
processors 15 mereased to infinity. Therefore, Eq.(2) 1s referred to as a sequential bottle
neck of multiprocessor systems.

() e [Title : CS4402 Studly

Student Number : 110707163

. Ji Ll C C Student Name : Brian O Regan

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

Important Consequences

n

T1+(n=1)-f

S(n)

f=0 when no serial part = S(n)=n perfect speedup.

f=1 when everything is serial =% S(n)=1 no parallel code.

Important Consequences

n

T1+(=-1). f

S(n)

S(n) is increasing when n is increasing

S(n) is decreasing when f is increasing.

Important Consequences

n 1

I T

no matter how many processors are being used the
speedup cannot increase above

Examples:
f= 5% = S(n) <20
f=10% = S(n) < 10
f=20% = S(n) < 5.

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

Odd-Even

This a variation of Bubble Sort and operates in two alternating phases, an even phase and an off
phase.

Even — Even-numbered processes exchange numbers with their right neighbour.
Odd - Odd-numbered processes exchange numbers with their right neighbour.

int MPI_OddEven_Sort(int n, double *a, int root, MPI_Comm comm) {

int rank, size, i, sorted_result;
double *local_a;

// get rank and size of comm
MPI_Comm_rank(comm, &rank); //&rank = address of rank
MPI_Comm_size(comm, &size);

local_a = (double *) calloc(n/size, sizeof(double));

// scatter the array a to local_a
MPI_Scatter(a, n/size, MPI_DOUBLE, local_a, n/size, MP|_DOUBLE, root, comm);

// sort local_a
merge_sort(n/size, local_a);

// do the odd-even stages (as in the slide - get the same code, it will help a lot)
for(i = 0; i< size; i++) {

if((i + rank) % 2 == 0) { // means i and rank have same nature

if(rank < size-1) {
MPI_Compare(n/size, local_a, rank, rank+1, comm);
}
}
else if(rank>0) {
MPI_Compare(n/size, local_a, rank-1, rank, comm);

}

MPI_Barrier(comm);

// test if array is sorted
MPI_Is_Sorted(n/size, local_a, root, comm, &sorted_result);

// is sorted gives integer O or 1, if 0 => array is sorted
if(sorted_result == 0) { break; } // check for iterations

Title : CS4402 Study

u C C Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

}

// gather local_a to a
MPI_Gather(local_a, n/size, MPI_DOUBLE, a, n/size, MPI_DOUBLE, root, comm);

return MPI_SUCCESS;

Compare
Take place between processors rank1, rank2. Each processor keeps the array a=(ali],i=0,1,...,n).

Step 1. The array is scattered onto p smaller arrays.

Step 2. Processor rank sorts its local array.

Step 3. While is not sorted / is needed compare and exchange between some processors
Step 4. Gather of arrays to restore the sorted array.

int MPI_Compare(int n, double *a, int rank1, int rank2, MPI_Comm comm) {
int rank, size, i, tagl = 0, tag2 = 2;

MPI_Status status;
MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);

double *b = (double *) calloc(n, sizeof(double));
double *c;

//do pingpong between rank 1 and rank 2
if(rank == rank1) {
MPI_Send(&a[0], n, MPI_DOUBLE, rank2, tag1, comm);

MPI_Recv(&b[0], n, MPI_DOUBLE, rank2, tag2, comm, &status);

¢ =merge_array(n,a,n,b);
for(i=0;i<n;i++){

ali] = c[il;
}

}
else if(rank == rank2) {

MPI_Recv(&b[0], n, MPI_DOUBLE, rank1, tagl, comm, &status);
MPI_Send(&a[0], n, MPI_DOUBLE, rank1, tag2, comm);

¢ =merge_array(n,a,n,b);
for(i=0;i<n;i++){

ali] = c[i+n];
}

}
return MPI_SUCCESS;

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

Bucket Sort

Suppose that array=(array(i], i=0,...,n-1) has all elements in the interval [0, a]. Use multiple buckets /
collectors to filter the elements in the buckets. Then sort the buckets.

MPI_Bucket_sort(int n, double *a, double m, int root, MP|_Comm comm) {

int rank, size, *bucketSize, *bucketSizes;
int n = 100000;

double m = 1000.0;

double *a, *bucket;

MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);

a = (double *) calloc(n, sizeof(double));
bucket = (double *) calloc(n, sizeof(double));
bucketSizes = (int *) calloc(size, sizeof(int));

// Initialise the array a with random values

// Braodcast the array to the processor
MPI_Bcast(&a[0], n, MPI_DOUBLE, root, comm);

// Collect the elements of bucket rank from array
bucketSize = 0;
for(i=0;i<n;i++){
// when ali] is in the bucket
if (afi] >= m*rank/size && a[i] < m*(rank + 1)/size) {
bucket[bucketSize++] = a[i];
}
}

// Sort the bucket
merge_sort(bucketSize, bucket);

// Gather the buckets i.e gather bucketSize to bucketSizes
MPI_Gather(&bucketSize, 1, MPI_INT, &bucketSizes[0], 1, MPI_INT, root, comm);

// calculate the displacements
if(rank==0) {
for(disp[0]=0; i<size-1; i++) {
disp[i+1]=disp[i] + bucketSize[i];
}
}

// Gatherv the array
MPI_Gatherv(&bucket[0], bucketSize, MPI|_DOUBLE, &a[0], bucketSizes, disp, O,
MPI_COMM_WORLD);

Title : C54402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

return MPI_SUCCESS;

Shell Sort

Shell Sort is based on two stages:
Stage 1. Divide the shells
for 1=0,1,2, log(p)
- Exchange in parallel between extreme processors in each shell.
Stage 2. Odd-Even
for1=0,1,2, ...,.p
- if rank and | are both even then exchange in parallel betw rank and rank+1
- if rank and | are both odd then exchange in parallel betw rank and rank+1
- test “array sorted”

Shell Sort Complexity

Shell Sort Complexity

n., n
Stage 0. To sort out the scattered array = —plog —mem

Stage 1. Odd-Even for / levels =

21 Ty + 2= L T+ 21T, = 210g% P Ty +2-—log* p-T,,, +2-—log* p T,
p P P p
Catch = the average complexity of / is in this case
O(log”"2(p)) so that in average the shell can be
n
Scatter and Gather & 2 .;.Tmmm
[n n n s) (_n n _ 3
“log —+2—-lglpl| T, +l2—+2"-logtp| T, +2 lg’p-T,
|l‘_ b P r J |l‘ D P) vt

int MPI_Shell_Sort(int n, double *a, int root, MPl_Comm comm) { // Odd-Even Sort

int rank, size, i, I, k, pair, sorted_result;
double *local_a;

// get rank and size of comm
MPI_Comm_rank(comm, &rank);

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11t December 2014 @ 16.30

MPI_Comm_size(comm, &size);

local_a = (double *) calloc(n/size, sizeof(double));

//Stage 1. Divide the shells
//for1=0,1,2, log(p)
// - exchange in parallel betw extreme processors in each shell.
for(l =0; | < log(size); I++){
k = (rank*pow(2, 1)) / size;
pair = (2*k +1)*(size/pow(2, 1)) -1 -rank;

if(rank < pair) {
MPI_Compare(n/size, local_a, rank, pair, comm);
}
if(rank > pair) {
MPI_Compare(n/size, local_a, pair, rank, comm);
}
}

// scatter the array a to local_a

MPI_Scatter(a, n/size, MP|_DOUBLE, local_a, n/size, MPI_DOUBLE, root, comm);

// sort local_a
merge_sort(n/size, local_a);

// do the odd-even stages
for(i = 0; i< size; i++) {
if((i+rank) %2==0){

if(rank < size-1) {
MPI_Compare(n/size, local_a, rank, rank+1, comm);

}
}
else {
iffrank >0) {
MPI_Compare(n/size, local_a, rank-1, rank, comm);
}
}

MPI_Barrier(comm);

// test if array is sorted
MPI_Is_Sorted(n/size, local_a, root, comm, &sorted_result);

// is sorted gives integer 0 or 1, if 0 => array is sorted
if(sorted_result == 0) { break; } // check for iterations

}

// gather local_a to a
MPI_Gather(local_a, n/size, MP|_DOUBLE, a, n/size, MP|_DOUBLE, root, comm);

Title : CS4402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

return MPI_SUCCESS;

Linear Sort

Suppose that the array a=(a[i], i=0,...,n-1) has only integers in 0,1,...,m-1. In this case we can count how
many times j=0,1,...,m-1 occurs in a. Then this information is reused to generate the array.

Example:
a=(2,1,3,2,1,3,0,1,1,2,0,3,1)
count[0]=2, count[1]=5, count[2]=3, count[3]=3
a is restore with 2 0-s, 5 1-s, 3 2-s and 3 3-s.
a=(0,0,1,1,1,1,1,2,2,2,3,3,3)

MPI_Linear_sort(int n, int *a, int m, int root, MPl_Comm comm) {

// The array a is scattered on processors.

// The count is done on the scattered arrays.

// The count arrays are all sum-reduced on processors
// If root then restore the array

int rank, size, i, sorted_result;
double *local_a;

// get rank and size of comm
MPI_Comm_rank(comm, &rank); //&rank = address of rank
MPI_Comm_size(comm, &size);

local_a = (double *) calloc(n/size, sizeof(double));

// Scatter the array a to local_a
MPI_Scatter(a, n/size, MPI_DOUBLE, local_a, n/size, MP|_DOUBLE, root, comm);

// The count is done on the scattered arrays.
//for(i=0;i<n/size; i++) { local_sum +=local_ali] }

// reset the counters
for(j=0;j<m;j++) count[j] = 0;
// generate the counters
for(i=0;i<n;i++) count[ali]] ++;
// restore the array order based on counters
for(j=0;j<m;j++)

for(k=0;k<count[j];k++)

afi++] = j;

// Reduce local_sum into sum
MPI_Reduce (&local_sum, &sum, 1, MP|_DOUBLE, MPI_SUM, 0, MP|_COMM_WORLD);

Title : C54402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

// If root then restore the array
iffrank ==0) {
for(i=0; i<n; i++) {
ali] = sum[i];

}

Rank Sort

The number of numbers that are smaller than each of the selected number counted. This count
provides the position of the selected number in the sorted list, that is, its rank.

MPI_Rank_sort(int n, int * a, int * b, int root, MPI_Comm comm)
{
int rank, size, * ranking, *overallRanking;
MPI_Comm_size(comm, &size); MPl_Comm_rank(comm, &rank);
ranking = (int *) calloc(n/size, size(int)); overallRanking = (int *) calloc(n, size(int));
// bcast the array a
MPI_Bcast(&a[0], n, MPI_INT, root, comm);
// generate the array ranking
for(i=0; i<n/size; i++)
for(ranking[i]=j=0; j<n; j++)
if(alj]>a[i+rank*n/size])ranking[i]++;
// gather ranking
MPI_Gather(&ranking[0], n/size, MPI_INT, &overallRanking[0], n/size, MPI_INT, root, comm);
// restore the order
if(rank==0){
for(i=0;i<n;i++)b[overallRanking[i]]=a[i];
}
return MPI_SUCCESS;

MPI_Bcast()
Sends a message from the process with the rank ‘root’ to all other processes in the group.

MPI_Bcast(&a[0], n, MPI_DOUBLE, root, comm);

Title : C54402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

MPI_Reduce()
Applies a reduction operation on all tasks in the group and places the result in one task.

MPI_Reduce (&local_sum, &sum, 1, MPI_DOUBLE, MP|_SUM, 0, MPI_COMM_WORLD);

MPI_Send()
Basic send routine returns only after the application buffer in the sending task is free for reuse.

MPI_Send(&a[0], n, MPI_DOUBLE, rank1, tag1, comm);

MPI_Recv()
Receive a message and block until the requested data is available.

MPI_Recv(&b[0], n, MPI_DOUBLE, rank1, tag1, comm, &status);

MPI_Init()
Initalises the MPI execution environment.

MPI_Init (&argc, &argv)

MPI_Gather()
Gathers direct messages from each task in the group to a single destination task — Opposite of
Scatter.

MPI_Gather(&bucketSize, 1, MPI_INT, &bucketSizes[0], 1, MPI_INT, root, comm);

MPI_Is_Sorted()
Test if the array is sorted. Is sorted gives integer O or 1. If 0 => array is sorted.

MPI_Is_Sorted(n/size, local _a, root, comm, &sorted_result);

MPI_Compare()

MPI_Compare(n/size, local_a, rank, pair, comm);

Title : C54402 Study

Student Name : Brian O Regan

Student Number : 110707163

Module : C54402

Exam Date: Thursday 11th December 2014 @ 16.30

MPI_Scatter()
Distributes from a single task to each task in the group.

MPI_Scatter(a, n/size, MP|_DOUBLE, local_a, n/size, MP|_DOUBLE, root, comm);

MPI_Max()

MPI_Max_array(int *a, int *max, MP|_Comm comm) {
If (rank == 0) {
max = mymax;

for(i=1;i<numprocs;i++) {
MPI_Recv(&mymax, 1, MP|_INT, MP|_ANY_SOURCE, 1, MP|_COMMM_WORLD,
&status);
iffmax<mymax) max = mymax;
}
printf(max);

Odd-Even = so digest S Sort

D Do

Is Sorted
Get
Even

Scatter
Test
When
Compare

Bucket Sort = wc bc gigs

Broadcast

Calculate
Gather
Initialise
Gather
Sort

mm—mnmng—lmmm

