Title : CS4402 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4402
Exam Date: Thursday 11th December 2014 @ 16.30

## Review / Exam Lecture Notes

- Introduction section: Needs to be learned very well
- Programming with MPI section: Needs to be understood decently
- Question 1 will contain a question on either Amdahl's law, or Gustafson's law
- MUST know consequences of laws; i.e: results of more serial parts/more processors added
- Question 2 will be on MPI Methods
- Question 3 will be on Sorting Algorithms.
- MUST know Core MPI functions: send, recv, scatter, gather, bcast etc. Need to memorise methods with appropriate arguments.
- Will need to write an MPI function with the methods studied
- MUST be able to solve simple routines as done in the labs
- MUST know Compare/Exchange.
- Hinted that Odd/Even sort will be on the exam
- Need to understand/be able to write MPI methods for max, min, product, comp/exch etc.
- Will be a question on examining the complexity of a sorting method (number of operations, evaluated into an expression)
- Possible sorting methods: simplistic, linear, bucket, ranking, odd/even, shell.
- Questions that will NOT appear:
- Merge sort w/ Divide \& Conquer
- Canon/Matrix Multiplication
- Fractals
- Virtual Topologies
- Bitonic sorting
- Cloud Computing
- On answering questions:
- "Briefly describe": Sabin wants 2 sentences, max.
- "Describe": Sabin wants 4 sentences, max.

2014 Exam with answers
Question 1. Parallel Computing Models
(a) Explain briefly the following terms: Shared Memory Machine, Distributed Memory Machine, SPMD and Load Balancing.
(10 marks)

Q 1

$$
Q_{1}=17
$$

A (1) Shared Memory Machine
A machine in which each individual processing unit all access a common shaped Memory


The processing units do not have their own memory
(11) Distributed Memory Machine A machine in whin. so... individual processing unit has its own local. memory. Data must be shared thrush message passing


A hyorid machine combines both of these Models

Q1a(11) SPMD. Single Program Multiple Datastriams one of the sub classifications of MIMD in which a single program acts on Multiple data streams. firn's


Q1@(II) Load balancins is the act of attempting to balance the computational burden of a multiprocessor system even ill across the individual Processors in the system
(b) State the Gustafson law and provide a proof for it.
(10 marks)
QU
6

$$
\begin{aligned}
& \text { Gustarson's Law States that; } \\
& S(n)=n . \text { Serial Part }+(1-\text { Serial Part })
\end{aligned}
$$

(c) Give and explain briefly four consequences of this law.
(10 marks)
$\qquad$
QT
c.
It Provides no upperboknd on speedup
Las you increase the number of processors the speedup also increases

Got The greater the serial part, the smaller
the speedup tie speedup

## Question 2. MPI Programming and Parallel Algorithms

(a) Explain briefly and give the full prototype for the following MPI functions: MPI_Bcast(), MPI_Gather(), MPI_Gatherv(), MPI_Comm_size().

QL.

$$
O_{2}=50
$$

A MPI Beast. Broadcast th Value of
of a bafrier to all processors within a communication group
int MPI_Beast (void* buFFer, // buFfer to send Int count, // the size or buffer MPI-Data type, // in thee of che teems int root, I/ the rank of the proc sending buFfer MPI-Comm Comm-group // comm group of processors takins Part in Beast
returns response code, MPI-success if surcesseull (as do all the following methods)

MPI Gather. Gather a buFFer of elements From many processors to one processor
(nt MPI_Gather C-void * buFfer,.. // Send buFfer int count, // send count MPI-Data type, // type of therms inbuFrer void* buffer // receive buffer int court, I/ receive count MPI Data type, // type of receive items int root, // root of proc gathering to MPI_comm comm_group // group of processo takins part

MPI-Gathers gather data from remote
Processors to a root where the length OF each set of items a process or can send varices

Int MPI-Gatherv CVold ${ }^{*}$ buffer, // Send buFfer int count, // count of send burner One OF MPI-Double MRI INT RC -5 MPI. Data type, Il type of send burrs void * puffer, // receive buffer int count, // count of receive bur int ${ }^{*}$ disses, //Array instructing how to stich back cue MPI Dat a type, Ittyel or recereve bud int root, // destination of gater MPI_Comm commgroup // comm grout $j ;$ /l of pros performing gather

MPI_Comm-size get the size of
a particular comm group

Int MPI ComM_ Size CMDI_Comm comm_group, *int size. I/ ware size will be ) ; Placed
(b) Give an explanation of how the parallel bucket sort works and write an MPI function for it. The prototype of this function may be:
int MPI_Sort(int $n$, int ${ }^{*}$ a, int root, MPI_Comm comm)
(20 marks)

Q2. The entire array is broadcast to $B$ all processors in the sorting group tach Processor gets the items the it Particular bucket:-
Once a processor sots their bucket it sorts the bucket internally.
The buckets are then gathered up in order into the overall sorted array


$$
\begin{aligned}
& \{0,1,2\} \quad 3,4,5\}(6,78) \\
& \text { bucket } \\
& \text { 0-2 } \\
& \text { 3-5 } \\
& 6-9 \\
& \text { tot } \\
& \text { Sorted }
\end{aligned}
$$

Assume exists an $M$ such that $m$ is max item in list int MPI_Sort (int $n$, int * $a$, int root, MPI_Comm comm)
$\varepsilon$
int size, rank, i, rc; -
MPI_Comm_size (comm, $\gamma$ size) $j$
MPI_Comm-rank (comm, $\gamma$ rank) j
"Broadcast entire; array to all Processors

$$
\begin{aligned}
& r c=\text { MPI-Bcast }(a, \text { MPI_INT, root, comm }) j \\
& \text { IF }(r C \text { ! }=\text { MPI-Success }) \varepsilon \\
& \quad M P I-A b o r t ~ \\
& 3 \\
& \text { (o, comm }) j \\
& \text { int* bucket }=(\text { int }
\end{aligned}
$$

$$
\text { int bucket Count }=0 \text { j }
$$

int bucket Range Length $=\mathrm{M} /$ size; for $(i=0 ; i<n j i+t) \varepsilon$

$$
\begin{aligned}
& \text { If }(a[i]>\operatorname{rank} * \text { bucket Range Length } \gamma \gamma \\
&a[i]<(\text { rank }+1) * \text { bucket Range Length }) \mathcal{L}
\end{aligned}
$$

$$
3
$$

$$
\text { bucket }[\text { bucker Count } t+]=a[i] ; 3
$$

Merge_sort (bucket, bucker-count) j
int* overall Bucket Count $=$ (int *) callow (size, sizeof(int)).
$r=$ MPI. Gather (bucke rCourt, 1, MPI_INT, overall Bucket Count, 1, MPI-Int, root, comm);
FF $(r c!=$ MPI-Sucess $)$ E
MPI Abort (0, Comm);
3

```
    int * disels;
    If (rank = root)\varepsilon
        dispes = (int*) calloc (size, sizeof(int))j
        displs[0]=0j
        For ( }i=1;1\leqslant\mathrm{ size; }i+t)
            displs}[i]=\operatorname{displs}[i-1]+\mathrm{ overall BudGet 
                3
3
```

$\Gamma C=$ MPI_Gatherv (bucket, bucket Count, MPI- INT, ra, $n$, rdispes, MPI-INT, root, comin);
return Te;
3
(c) Evaluate the speedup of the MPI_Sort function assuming that all buckets are similarly sized. For simplicity consider that the complexity of the sequential sort is quadratic and $T_{\text {startup }}=0$.
(10 marks)

$\operatorname{Tcomm}(n)=$
Tom for Blast $=n$. Tcomm
Tom for bucketcount gather = size. Tcomm
Tom for gathers $=n$. Tcomm
$\Rightarrow \operatorname{Tcomm}(n)=2 n+51 z e$. Tcomm

Tcompate $(n)=$
Compute fill buckets $=n$. Tcompyte
Tcompute sort interal buckets $=n / s$ size $\log n /$ size From assumption of similarity sized backers Sorting using normal merge sort Tcompate displacements $=$ size. Tcompute

$$
\begin{aligned}
& \Rightarrow \text { Tcompute }(n)=n+\frac{n}{\text { size }} \log \frac{n}{\text { size }}+\text { size. Tcompute } \\
& \Rightarrow T(n)=2 n+\text { size. Tom }+n+\frac{n}{\text { size } \log \frac{n}{\text { size }}+\text { size. Tcomputel }} \\
& \Rightarrow \text { Speedup }=-n^{2} \\
& \text { 2n+size Tom }+n+\frac{n}{\text { size }} \log \frac{n}{\text { size }+ \text { size. Tcompute }}
\end{aligned}
$$

$$
10 p^{n}
$$

(d) Provide and briefly discuss two negative and two positive facts about the MPI_Sort function.
(10 marks)
Q 2
D Negative Facts
1 entire array must be broadcast to all processors takins part if sort
$\Rightarrow$ This increases communication complex (t) substant tally
2. Each processor must theqrate the
entire array to find the contents of its buckets.
$\Rightarrow$ increases linearity with cent h of array

3 A processor does not know how many Items are goons to be in its bucket. this means it. must allocate a bucket of size $n$ $\Rightarrow$ increases space complexity

4 An upper and lower bound must be known on the contents of tie array. in this cause it was assumed $m$ and 0 .
$5=$ Not all arrays are good candidates For bucket sort. The must be event 7 distributed

$$
\text { es }[1,200042,200043,200000, \ldots .]
$$




## Terms \& Definitions

| SISD | Short for single instruction, single data. A type of parallel computing <br> architecture that is classified under Flynn's taxonomy. A single processor <br> executes a single instruction stream, to operate on data stored in a single <br> memory. There is often a central controller that broadcasts the instruction <br> stream to all the processing elements. |
| :--- | :--- |
| MISD | Short for multiple instruction, single data. A type of parallel computing <br> architecture that is classified under Flynn's taxonomy. Each processor owns its <br> control unit and its local memory, making them more powerful than those used <br> in SIMD computers. Each processor operates under the control of an <br> instruction stream issued by its control unit: therefore the processors are <br> potentially all executing different programs on different data while solving <br> different sub-problems of a single problem. This means that the processors <br> usually operate asynchronously. |
| SIMD | Short for single instruction, multiple data. A type of parallel computing <br> architecture that is classified under Flynn's taxonomy. A single computer <br> instruction perform the same identical action (retrieve, calculate, or store) <br> simultaneously on two or more pieces of data. |


| $\overline{\mathrm{UCC}}$ | Title : CS4402 Study |
| :---: | :---: |
|  | Student Name : Brian O Regan |
|  | Student Number : 110707163 |
|  | Module : CS4402 |
|  | Exam Date: Thursday 11 ${ }^{\text {th }}$ December 2014 @ 16.30 |


|  | performs the same instruction on its local data progressing through the <br> instructions in lock-step, with the instructions issued by the controller <br> processor. The processors can communicate with each other in order to <br> perform shifts and other array operations. |
| :--- | :--- |
| MIMD | Short for multiple instruction, multiple data. A type of parallel computing <br> architecture that is classified under Flynn's taxonomy. Multiple computer <br> instructions, which may or may not be the same, and which may or may not be <br> synchronized with each other, perform actions simultaneously on two or more <br> pieces of data. The class of distributed memory MIMD machines is the fastest <br> growing segment of the family of high-performance computers |
| MPI | M PI = Message Passing Interface <br> An Interface Specification: MPI is a specification for the developers and users of <br> message passing libraries. By itself, it is NOT a library - but rather the <br> specification of what such a library should be. <br> Simply stated, the goal of the Message Passing Interface is to provide a widely <br> used standard for writing message passing programs. <br> The interface attempts to be: practical, portable, efficient, flexible. <br> Interface specifications have been defined for Fortran, C/C++ and Java <br> programs. |
| SPMD | In computing, SPMD (single program, multiple data) is a technique employed to <br> achieve parallelism; it is a subcategory of MIMD. Tasks are split up and run <br> simultaneously on multiple processors with different input in order to obtain <br> results faster. SPMD is the most common style of parallel programming. |


| $\overline{\mathrm{ulCC}}$ | Title : CS4402 Study |
| :---: | :---: |
|  | Student Name : Brian O Regan |
|  | Student Number : 110707163 |
|  | Module : CS4402 |
|  | Exam Date: Thursday 11 ${ }^{\text {th }}$ December 2014 @ 16.30 |



| 4icc | Title : CS4402 Study |
| :---: | :---: |
|  | Student Name : Brian O Regan |
|  | Student Number : 110707163 |
|  | Module : CS4402 |
|  | Exam Date: Thursday 11 ${ }^{\text {th }}$ December 2014 @ 16.30 |


| Distributed Shared Memory | Distributed Shared Memory <br> Each processor has access to the whole memory using a single memory address space. For a processor to access a location not in its local memory, message passing must occur to pass data from the processor to the location or from the location to the processor, in some automated way that hides the fact that the memory is distributed. <br> Figure 1.5 Shared memory multiprocessor implementation. |
| :---: | :---: |
| Multiple <br> Program <br> Multiple Data <br> (MPMD) | Multiple Program Multiple Data (MPMD) Structure <br> Within the MIMD classification, which we are concerned with, each processor will have its own program to execute: <br> Figure 1.6 MPMD structure. |


|  | Title : CS4402 Study |
| :---: | :---: |
|  | Student Name : Brian O Regan |
|  | Student Number : 110707163 |
|  | Module : CS4402 |
|  | Exam Date: Thursday 11 ${ }^{\text {th }}$ December 2014 @ 16.30 |
| Single Program Multiple Data (SPMD) | Single Program Multiple Data (SPMD) Structure <br> Single source program is written and each processor will execute its personal copy of this program, although independently and not in synchronism. <br> The source program can be constructed so that parts of the program are executed by certain computers and not others depending upon the identity of the computer. |

## Laws

## Flynn's Taxonomy

First proposed by Michael J. Flynn in 1966, Flynn's taxonomy is a specific classification of parallel computer architectures that are based on the number of concurrent instruction (single or multiple) and data streams (single or multiple) available in the architecture. The four categories in Flynn's taxonomy are the following:

- (SISD) single instruction, single data
- (MISD) multiple instruction, single data
- (SIMD) single instruction, multiple data
- (MIMD) multiple instruction, multiple data


## Gustafson's Law

This law says that increase of problem size for large machines can retain scalability with respect to the number of processors.

Assume that the workload is scaled up on an $n$-node machine as, $s$

$$
W^{\prime}=\alpha W+(1-\alpha) n W
$$

Title : CS4402 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4402
Exam Date: Thursday 11th December 2014 @ 16.30

Speedup for the scaled up workload is then,

$$
\begin{align*}
& S_{n}^{\prime}=\frac{\text { Single ProcessorExeutionTime }}{n-\text { ProcessorExecutionTime }} \\
& S_{n}^{\prime}=\frac{(\alpha W+(1-\alpha) n W) / 1}{\frac{\alpha W}{1}+\frac{(1-\alpha) n W}{n}} \tag{3}
\end{align*}
$$

Simplifying Eq.(3) produces the Gustafson's law:

$$
\begin{equation*}
S_{n}^{\prime}=\alpha+(1-\alpha) n \tag{4}
\end{equation*}
$$

Notice that if the workload is scaled up to maintain a fixed execution time as the number of processors increases, the speedup increases linearly. What Gustafson's law says is that the true parallel power of a large multiprocessor system is only achievable when a large parallel problem is applied.

## Important Consequences:

1) $S(n)$ is increasing when $n$ is increasing
2) $\mathrm{S}(\mathrm{n})$ is decreasing when n is increasing
3) There is no upper bound for the speedup.

|  | Title : CS4402 Study |
| :---: | :---: |
|  | Student Name : Brian O Regan |
|  | Student Number : 110707163 |
|  | Module : CS4402 |
|  | Exam Date: Thursday 11碞 December 2014 @ 16.30 |



Amdahl's Law states that for a problem of a fixed size(in terms of data), the speed up of a program executed on multiple processors is limited by the serial parts of the program. It is often used to predict the theoretical maximum speedup using multiple processors. (f is the serial part)

For example, Assume that a task has two independent parts, A and B. A takes 75\% of the time of $t$ he whole computation and $B$ takes $25 \%$, where $A$ is parallelizable and $B$ is serial.

If part $A$ is made to run twice as fast;

- $\mathrm{n}=2$
- timeA $=75$
- timeB $=25$
- $\mathrm{f}=$ time $\mathrm{B} /($ time $\mathrm{A}+$ timeB $)=0.25$

$$
\text { maximum speedup } \leq \frac{2}{1+0.25 \cdot(2-1)}=1.60
$$

As can be seen from above equation, no matter how many processors you may add to complete $t$ he computation, the maximum speedup achieved will always be limited by the serial part.
$f=0$ when no serial part $\rightarrow S(n)=n$ perfect speedup. $f=1$ when everything is serial $\rightarrow S(n)=1$ no par allel code.
$S(n)$ is increasing when $n$ is increasing
$S(n)$ is decreasing when $f$ is increasing.

We get perfect speedup $S(n)=n$ when $f=0$. There is no serial part of the program so all of the wor $k$ can be done in parallel. Conversely there is no $\operatorname{speedup} S(n)=1$ when $f=1$.

Title : CS4402 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4402
Exam Date: Thursday $11^{\text {th }}$ December 2014 @ 16.30

The speedup has an upper bound of $1 / \mathrm{f}$

$$
S(n)=\frac{n}{1+(n-1) \cdot f} \leq \frac{1}{f}
$$

From the above we can see that no matter how many processors are being used, the speedup cannot increase above 1 / f. (the speedup has an upper bound of 1 / f)

This means the gain in speed achieved by adding another processor decreases as n becomes large.

## Computational workload $W$ is fixed while the number of processors that can work on W can be increased.

In Amdahl's law, computational workload $W$ is fixed while the number of processors that can work on $W$ can be increased.

Denote the execution rate of $i$ processors as $R_{i}$, then in a relative comparison they can be simplified as $R_{1}=1$ and $R_{n}=n$. The workload is also simplified. We assume that the workload consists of sequential work $\alpha W$ and $n$ parallel work $(1-\alpha) W$ where $\alpha$ is between 0 and 1 . More specifically, this workload can be written in a vector form as, $W=(\alpha, 0, \ldots, 0, \alpha-1) W$, or, $W_{1}=\alpha W, W_{n}=(1-\alpha) W$, and $W_{i}=0$ for all $i \neq 1, n$.

The execution time of the given work by $n$ processors is then computed as,

$$
T_{n}=\frac{W_{1}}{R_{1}}+\frac{W_{n}}{R_{n}}
$$

Speedup of $n$ processor system is defined using a ratio of execution time, i.e.,

$$
S_{n}=\frac{T_{1}}{T_{n}}
$$

Substituting the execution time in relation $W$ gives,

$$
\begin{equation*}
S_{n}=\frac{W / 1}{\frac{\alpha W}{1}+\frac{(1-\alpha) W}{n}}=\frac{n}{1+(n-1) \alpha} \tag{1}
\end{equation*}
$$

Eq.(1) is called the Amdahl's law. If the number of processors is increased infinity, the speedup becomes,

$$
\begin{equation*}
S_{\infty}=\frac{1}{\alpha} \tag{2}
\end{equation*}
$$

Notice that the speedup can NOT be increased to infinity even if the number of processors is increased to infinity. Therefore, Eq.(2) is referred to as a sequential bottle neck of multiprocessor systems.

## Important Consequences

$S(n)=\frac{n}{1+(n-1) \cdot f}$
$\mathscr{H} \mathrm{f}=0$ when no serial part $\rightarrow \mathrm{S}(\mathrm{n})=\mathrm{n}$ perfect speedup.
\&f $f=1$ when everything is serial $\rightarrow S(n)=1$ no parallel code.

## Important Consequences

$S(n)=\frac{n}{1+(n-1) \cdot f}$
$\mathscr{H} S(n)$ is increasing when $n$ is increasing
$\mathscr{S}(\mathrm{n})$ is decreasing when f is increasing.

## Important Consequences

$$
S(n)=\frac{n}{1+(n-1) \cdot f} \leq \frac{1}{f}
$$

no matter how many processors are being used the speedup cannot increase above

## Examples:

$$
\begin{aligned}
& f=5 \% \rightarrow S(n)<20 \\
& f=10 \% \rightarrow S(n)<10 \\
& f=20 \% \rightarrow S(n)<5 .
\end{aligned}
$$

Title : CS4402 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4402
Exam Date: Thursday $11^{\text {th }}$ December 2014 @ 16.30

## Code

## Odd-Even

This a variation of Bubble Sort and operates in two alternating phases, an even phase and an off phase.

Even - Even-numbered processes exchange numbers with their right neighbour.
Odd - Odd-numbered processes exchange numbers with their right neighbour.

```
int MPI_OddEven_Sort(int n, double *a, int root, MPI_Comm comm) {
    int rank, size, i, sorted_result;
    double *local_a;
    // get rank and size of comm
        MPI_Comm_rank(comm, &rank); //&rank = address of rank
        MPI_Comm_size(comm, &size);
        local_a = (double *) calloc(n/size, sizeof(double));
    // scatter the array a to local_a
        MPI_Scatter( a, n/size, MPI_DOUBLE, local_a, n/size, MPI_DOUBLE, root, comm );
    // sort local_a
    merge_sort(n/size, local_a);
    // do the odd-even stages (as in the slide - get the same code, it will help a lot)
    for(i=0; i < size; i++) {
        if( (i + rank) % 2 == 0 ) { // means i and rank have same nature
        if( rank < size-1 ) {
        MPI_Compare(n/size, local_a, rank, rank+1, comm);
        }
    }
    else if(rank > O ) {
        MPI_Compare(n/size, local_a, rank-1, rank, comm);
    }
    MPI_Barrier(comm);
    // test if array is sorted
            MPI_Is_Sorted(n/size, local_a, root, comm, &sorted_result);
    // is sorted gives integer 0 or 1, if 0 => array is sorted
    if(sorted_result == 0) { break; } // check for iterations
```

| $\mathrm{ULC}$ | Title : CS4402 Study |
| :---: | :---: |
|  | Student Name : Brian O Regan |
|  | Student Number : 110707163 |
|  | Module : CS4402 |
|  | Exam Date: Thursday $11^{\text {th }}$ December 2014 @ 16.30 |

```
    }
    // gather local_a to a
    MPI_Gather(local_a, n/size,MPI_DOUBLE, a, n/size, MPI_DOUBLE, root, comm );
    return MPI_SUCCESS;
}
```


## Compare

Take place between processors rank1, rank2. Each processor keeps the array $a=(a[i], i=0,1, \ldots, n)$.

Step 1. The array is scattered onto $p$ smaller arrays.
Step 2. Processor rank sorts its local array.
Step 3. While is not sorted / is needed compare and exchange between some processors
Step 4. Gather of arrays to restore the sorted array.
int MPI_Compare(int n, double *a, int rank1, int rank2, MPI_Comm comm) \{
int rank, size, i, tag1 = 0, tag2 = 2;
MPI_Status status;
MPI_Comm_rank(comm, \&rank);
MPI_Comm_size(comm, \&size);
double *b = (double *) calloc(n, sizeof(double));
double ${ }^{*}$ c;
//do pingpong between rank 1 and rank 2
if(rank == rank1) \{ MPI_Send ( \&a[0], n, MPI_DOUBLE, rank2, tag1, comm );

MPI_Recv( \&b[0], n, MPI_DOUBLE, rank2, tag2, comm, \&status );
$c=$ merge_array $(n, a, n, b)$;
for( $i=0 ; i<n ; i++)\{$
$a[i]=c[i] ;$
\}
\}
else if(rank == rank2) \{
MPI_Recv( \&b[0], n, MPI_DOUBLE, rank1, tag1, comm, \&status );
MPI_Send( \&a[0], n, MPI_DOUBLE, rank1, tag2, comm );
$c=$ merge_array $(n, a, n, b)$;
for( $i=0 ; i<n ; i++)$ \{
$a[i]=c[i+n] ;$
\}
\}
return MPI_SUCCESS;

| $\overline{\mathrm{UICC}}$ | Title : CS4402 Study |
| :---: | :---: |
|  | Student Name : Brian O Regan |
|  | Student Number : 110707163 |
|  | Module : CS4402 |
|  | Exam Date: Thursday 11 ${ }^{\text {th }}$ December 2014 @ 16.30 |

## \}

## Bucket Sort

Suppose that array=(array[i], $\mathrm{i}=0, \ldots, \mathrm{n}-1)$ has all elements in the interval $[0, a]$. Use multiple buckets / collectors to filter the elements in the buckets. Then sort the buckets.

MPI_Bucket_sort(int $n$, double *a, double m, int root, MPI_Comm comm) \{
int rank, size, *bucketSize, *bucketSizes;
int $n=100000$;
double $m=1000.0$;
double *a, *bucket;
MPI_Comm_rank(comm, \&rank);
MPI_Comm_size(comm, \&size);
$a=$ (double *) calloc(n, sizeof(double));
bucket $=($ double *) calloc(n, sizeof(double));
bucketSizes $=$ (int *) calloc(size, sizeof(int));
// Initialise the array a with random values
// Braodcast the array to the processor
MPI_Bcast( \&a[0], n, MPI_DOUBLE, root, comm );
// Collect the elements of bucket rank from array
bucketSize $=0$;
for ( $i=0 ; i<n ; i++$ ) \{
// when a[i] is in the bucket
if ( a[i] >= $m^{*} r a n k / s i z e ~ \& \& ~ a[i]<m^{*}(r a n k+1) /$ size ) \{
bucket[bucketSize++] = a[i];
\}
\}
// Sort the bucket
merge_sort( bucketSize, bucket );
// Gather the buckets i.e gather bucketSize to bucketSizes
MPI_Gather( \&bucketSize, 1, MPI_INT, \&bucketSizes[0], 1, MPI_INT, root, comm );
// calculate the displacements
if(rank==0) \{
for(disp[0]=0; i<size-1; i++) \{
disp[i+1]=disp[i] + bucketSize[i];
\}
\}
// Gatherv the array
MPI_Gatherv(\&bucket[0], bucketSize, MPI_DOUBLE, \&a[0], bucketSizes, disp, 0,
MPI_COMM_WORLD);

Title : CS4402 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4402
Exam Date: Thursday 11th December 2014 @ 16.30
return MPI_SUCCESS;
\}

Shell Sort

Shell Sort is based on two stages:
Stage 1. Divide the shells
for $I=0,1,2, \log (p)$

- Exchange in parallel between extreme processors in each shell.


## Stage 2. Odd-Even

for $I=0,1,2, \ldots, p$

- if rank and I are both even then exchange in parallel betw rank and rank+1
- if rank and I are both odd then exchange in parallel betw rank and rank+1
- test "array sorted"

Shell Sort Complexity

## Shell Sort Complexity

Stage 0 . To sort out the scattered array $\rightarrow \frac{n}{p} \log \frac{n}{p} T_{\text {com }}$

## Stage 1. Odd-Even for $l$ levels

$2 \cdot l \cdot T_{\text {startup }}+2 \cdot \frac{n}{p} \cdot l \cdot T_{\text {comm }}+2 \cdot \frac{n}{p} \cdot l \cdot T_{\text {com }}=2 \cdot \log ^{2} p \cdot T_{\text {startup }}+2 \cdot \frac{n}{p} \cdot \log ^{2} p \cdot T_{\text {comm }}+2 \cdot \frac{n}{p} \cdot \log ^{2} p \cdot T_{\text {com }}$
Catch $\rightarrow$ the average complexity of $l$ is in this case
$O\left(\log ^{\wedge} 2(p)\right)$ so that in average the shell can be
Scatter and Gather $\rightarrow 2 \cdot \frac{n}{p} \cdot T_{\text {comm }}$

$$
\left(\frac{n}{p} \log \frac{n}{p}+2 \frac{n}{p} \cdot \log ^{2} p\right) \cdot T_{\text {com }}+\left(2 \frac{n}{p}+2 \frac{n}{p} \cdot \log ^{2} p\right) \cdot T_{\text {comm }}+2 \cdot \log { }^{2} p \cdot T_{\text {startup }}
$$

int MPI_Shell_Sort(int n, double *a, int root, MPI_Comm comm) \{ // Odd-Even Sort
int rank, size, i, l, k, pair, sorted_result;
double *local_a;
// get rank and size of comm
MPI_Comm_rank(comm, \&rank);

Title : CS4402 Study
Student Name : Brian O Regan
Student Number: 110707163
Module : CS4402
Exam Date: Thursday 11 th December 2014 @ 16.30

```
MPI_Comm_size(comm, &size);
local_a = (double *) calloc(n/size, sizeof(double));
```

//Stage 1. Divide the shells
//for $1=0,1,2, \log (p)$
// - exchange in parallel betw extreme processors in each shell.
for (I = 0; I < log(size); I++)\{
$k=\left(\right.$ rank $^{*}$ pow $\left.(2, I)\right) /$ size;
pair $=\left(2^{*} k+1\right)^{*}(\operatorname{size} /$ pow(2, I)) -1 -rank;
if(rank < pair) \{
MPI_Compare(n/size, local_a, rank, pair, comm);
\}
if(rank > pair) \{
MPI_Compare(n/size, local_a, pair, rank, comm);
\}
\}
// scatter the array a to local_a
MPI_Scatter ( $a, n /$ size, MPI_DOUBLE, local_a, n/size, MPI_DOUBLE, root, comm );
// sort local_a
merge_sort(n/size, local_a);
// do the odd-even stages
for( $i=0 ; i<$ size; $i++$ ) \{
if( (i + rank) \% 2 == 0 ) \{
if( rank < size-1 ) \{
MPI_Compare(n/size, local_a, rank, rank+1, comm);
\}
\}
else \{
if( rank > 0 ) \{
MPI_Compare(n/size, local_a, rank-1, rank, comm);
\}
\}
MPI_Barrier(comm);
// test if array is sorted
MPI_Is_Sorted(n/size, local_a, root, comm, \&sorted_result);
// is sorted gives integer 0 or 1, if $0=>$ array is sorted
if(sorted_result ==0) \{ break; \} // check for iterations
\}
// gather local_a to a
MPI_Gather( local_a, n/size, MPI_DOUBLE, a, n/size, MPI_DOUBLE, root, comm );

| $\overline{\mathrm{UCC}}$ | Title : CS4402 Study |
| :---: | :---: |
|  | Student Name : Brian O Regan |
|  | Student Number : 110707163 |
|  | Module : CS4402 |
|  | Exam Date: Thursday 11 ${ }^{\text {th }}$ December 2014 @ 16.30 |

return MPI_SUCCESS;
\}

## Linear Sort

Suppose that the array $\mathrm{a}=(\mathrm{a}[\mathrm{i}], \mathrm{i}=0, \ldots, \mathrm{n}-1)$ has only integers in $0,1, \ldots, \mathrm{~m}-1$. In this case we can count how many times $\mathrm{j}=0,1, \ldots, \mathrm{~m}-1$ occurs in $a$. Then this information is reused to generate the array.

## Example:

$a=(2,1,3,2,1,3,0,1,1,2,0,3,1)$
count[0]=2, count[1]=5, count[2]=3, count[3]=3
a is restore with $20-\mathrm{s}, 51-\mathrm{s}, 32$-s and $33-\mathrm{s}$.
$a=(0,0,1,1,1,1,1,2,2,2,3,3,3)$
MPI_Linear_sort(int n, int *a, int m, int root, MPI_Comm comm) \{
// The array a is scattered on processors.
// The count is done on the scattered arrays.
// The count arrays are all sum-reduced on processors
// If root then restore the array
int rank, size, i, sorted_result;
double *local_a;
// get rank and size of comm
MPI_Comm_rank(comm, \&rank); //\&rank = address of rank
MPI_Comm_size(comm, \&size);
local_a $=($ double *) calloc(n/size, sizeof(double));
// Scatter the array a to local_a
MPI_Scatter( $a, n /$ size, MPI_DOUBLE, local_a, n/size, MPI_DOUBLE, root, comm );
// The count is done on the scattered arrays.
//for( $i=0 ; i$ < $n /$ size; $i++$ ) \{ local_sum += local_a[i] \}
// reset the counters
for(j=0;j<m;j++) count[j] = 0;
// generate the counters
for(i=0;i<n;i++) count[a[i]] ++;
// restore the array order based on counters
for( $j=0 ; j<m ; j++$ )
for ( $k=0 ; k<$ count $[j] ; k++$ )

$$
a[i++]=j ;
$$

// Reduce local_sum into sum
MPI_Reduce (\&local_sum, \&sum, 1, MPI_DOUBLE, MPI_SUM, O, MPI_COMM_WORLD );

| $\overline{\mathrm{ULCC}}$ | Title : CS4402 Study |
| :---: | :---: |
|  | Student Name : Brian O Regan |
|  | Student Number: 110707163 |
|  | Module : CS4402 |
|  | Exam Date: Thursday $11^{\text {th }}$ December 2014 @ 16.30 |

```
    // If root then restore the array
    if(rank == 0) {
        for(i=0; i<n; i++) {
        a[i] = sum[i];
        }
    }
}
Rank Sort
The number of numbers that are smaller than each of the selected number counted. This count provides the position of the selected number in the sorted list, that is, its rank.
MPI_Rank_sort(int n, int * a, int * b, int root,MPI_Comm comm)
{
    int rank, size, * ranking, *overallRanking;
    MPI_Comm_size(comm, &size); MPI_Comm_rank(comm, &rank);
    ranking = (int *) calloc(n/size, size(int)); overallRanking = (int *) calloc(n, size(int));
    // bcast the array a
    MPI_Bcast(&a[0], n, MPI_INT, root, comm);
    // generate the array ranking
    for(i=0; i<n/size; i++)
        for(ranking[i]=j=0; j<n; j++)
        if(a[j]>a[i+rank*n/size])ranking[i]++;
    // gather ranking
    MPI_Gather(&ranking[0], n/size, MPI_INT, &overallRanking[0], n/size, MPI_INT, root, comm);
    // restore the order
    if(rank==0){
        for(i=0;i<n;i++)b[overallRanking[i]]=a[i];
    }
    return MPI_SUCCESS;
}
```


## Sub-Routines

## MPI_Bcast()

Sends a message from the process with the rank 'root' to all other processes in the group.

MPI_Bcast( \&a[0], n, MPI_DOUBLE, root, comm );

| $\overline{\mathrm{ULCC}}$ | Title : CS4402 Study |
| :---: | :---: |
|  | Student Name : Brian O Regan |
|  | Student Number : 110707163 |
|  | Module : CS4402 |
|  | Exam Date: Thursday $11^{\text {th }}$ December 2014 @ 16.30 |



| $\overline{\mathrm{ulCC}}$ | Title : CS4402 Study |
| :---: | :---: |
|  | Student Name : Brian O Regan |
|  | Student Number : 110707163 |
|  | Module : CS4402 |
|  | Exam Date: Thursday 11 ${ }^{\text {th }}$ December 2014 @ 16.30 |



## Quick Revision

| Odd-Even = so digest | S |  |
| :--- | :--- | :--- |
|  | Sort |  |
|  | D | Do |
|  | I | Is Sorted |
|  | G | Get |
|  | E | Even |
|  | S | Scatter |
|  | T | Test |
| Bucket Sort = wc bc gigs | W | When |
|  | C | Compare |
|  | B | Broadcast |
|  | C | Calculate |
|  | G | Gather |
|  | I | Initialise |
|  | G | Gather |
|  | S | Sort |

